TSP tour domination and Hamilton cycle decompositions of regular digraphs
نویسندگان
چکیده
In this paper, we solve a problem by Glover and Punnen (1997) from the context of domination analysis, where the performance of a heuristic algorithm is rated by the number of solutions that are not better than the solution found by the algorithm, rather than by the relative performance compared to the optimal value. In particular, we show that for the Asymmetric Traveling Salesman Problem (ATSP), there is a deterministic polynomial time algorithm that finds a tour that is at least as good as the median of all tour values. Our algorithm uses an unpublished theorem by Häggkvist on the Hamilton decomposition of regular digraphs.
منابع مشابه
Approximate Hamilton Decompositions of Robustly Expanding Regular Digraphs
We show that every sufficiently large r-regular digraph G which has linear degree and is a robust outexpander has an approximate decomposition into edge-disjoint Hamilton cycles, i.e. G contains a set of r−o(r) edge-disjoint Hamilton cycles. Here G is a robust outexpander if for every set S which is not too small and not too large, the ‘robust’ outneighbourhood of S is a little larger than S. T...
متن کاملHamilton decompositions of regular expanders: a proof of Kelly's conjecture for large tournaments
A long-standing conjecture of Kelly states that every regular tournament on n vertices can be decomposed into (n− 1)/2 edge-disjoint Hamilton cycles. We prove this conjecture for large n. In fact, we prove a far more general result, based on our recent concept of robust expansion and a new method for decomposing graphs. We show that every sufficiently large regular digraph G on n vertices whose...
متن کاملNote on Upper Bounds for TSP Domination Number
The Asymmetric Traveling Salesman Problem (ATSP) is stated as follows. Given a weighted complete digraph (K∗ n, w), find a Hamilton cycle (called a tour) in K∗ n of minimum cost. Here the weight function w is a mapping from A(K∗ n), the set of arcs in K∗ n, to the set of reals. The weight of an arc xy of K∗ n is w(x, y). The weight w(D) of a subdigraph D of K∗ n is the sum of the weights of arc...
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کاملHamilton decompositions of regular expanders: Applications
In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n − 1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Oper. Res. Lett.
دوره 28 شماره
صفحات -
تاریخ انتشار 2001